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Abstract
Compound transport of energetic charged particles across the mean magnetic
field due to field line random walk is investigated by means of a Chapman–
Kolmogorov equation. The probability distribution function (pdf) for the
particle transport across the field P⊥ is given as a convolution of the pdf for
random walk of the magnetic field, PFRW, with the pdf Pp, for particle transport
relative to the random walking field. The particle propagator Pp includes the
effects of advection, drift, parallel diffusion and local perpendicular diffusion
of particles relative to the random walking field. At early times, the particles
sub-diffuse across the field due to field line random walk. At late times,
the effective cross-field diffusion coefficient has the form κ⊥e = κ⊥ + κF .
The diffusion coefficient κ⊥ is the local cross-field diffusion coefficient due
to particle scattering in the random magnetic field. The diffusion coefficient
κF is due to coherent particle advection parallel to the mean magnetic field
B0 coupled with transverse random walk of the magnetic field. Estimates
of cross-field diffusion due to field line random walk, advection and drift are
obtained both near to the heliospheric current sheet at Earth and at higher helio-
latitudes. Cross-field diffusion due to field line random walk and advection is
shown to be an important transport mechanism for low-energy particles near
the current sheet, where the effects of drifts are negligible. Drift effects and
field line random walk are also assessed at higher helio-latitudes off the current
sheet, for a model interplanetary magnetic field, with a flat current sheet in the
helio-equatorial plane.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Field line random walk is a subject of widespread interest and application in space plasma
physics and in fusion plasmas (e.g., Jokipii and Parker (1969), Jokipii (1973), Krommes et al
(1983), Matthaeus et al (1995), Isichenko (1991a, 1991b), Barghouty and Jokipii (1996),
Ragot (1999, 2000, 2006a–2006f, 2009), Shalchi and Kourakis (2007a, 2007b), Shalchi et al
(2007), Shalchi and Weinhorst (2009), Chuychai et al (2005), Zimbardo et al (2000, 2004),
Ruffolo et al (2003, 2004, 2006)). Matthaeus et al (1995) invoked Corsinn’s independence
hypothesis (Corsinn 1959) to determine the form of the field line random walk coefficient for
2D plus slab turbulence, assuming that the integrals involved in the theory converged. Ragot
(1999, 2001) showed that the mean square perpendicular deviation of the field line random
walk 〈�x2〉 ∝ |�z|α could be normal (α = 1), superdiffusive (α > 1) or subdiffusive (α < 1)

depending on the shape of the power spectrum of the turbulent magnetic field (see also later
papers by Ragot et al (2006a–2006c) and Shalchi and Kourakis (2007a, 2007b)). These results
are in general important in determining the cross-field transport of energetic charged particles
due to field line random walk.

The quasilinear theory for cosmic ray diffusion in weak slab turbulence was developed
by Jokipii (1966), Hasselman and Wibberenz (1968) and Hall and Sturrock (1967) (see also
the review by Jokipii (1971)). The spatial diffusion coefficient for particle transport parallel
to the mean magnetic field κ‖, and the pitch angle diffusion coefficient for particles Dμμ (μ
denotes the particle pitch angle cosine), obtained in these analyses depends on the power in
the magnetic turbulence in cyclotron resonance with the particles. The perpendicular spatial
diffusion coefficient κ⊥ is proportional to the power in the turbulence at zero wave number
associated with random walk of the field lines (e.g., Jokipii (1966), Jokipii and Parker (1969),
Forman et al (1974)). Forman et al (1974) gave a unified kinetic theory derivation of the
perpendicular and parallel diffusion coefficients κ⊥ and κ‖ as well as the anti-symmetric
components of the diffusion tensor, κA, associated with particle drifts for the case of weak
slab turbulence (for a recent account of quasilinear theory, see e.g. Schlickeiser 2001).

However, numerical simulations of charged particle transport in random magnetic fields
(Giacalone and Jokipii (1999), Mace et al (2000) and Qin et al (2002a, 2002b, 2003)) have
revealed that the quasilinear theory for spatial diffusion of cosmic rays perpendicular to the
mean magnetic field does not adequately account for the results of the simulations. Theoretical
work by Matthaeus et al (2003), Zank et al (2004) and Shalchi et al (2004) provides a
more satisfactory account for the results of the numerical simulations and in particular the
dependence of κ⊥ on the particle gyro-radius rg . In particular, κ⊥ is given by a nonlinear
integral equation involving an integral over the turbulence spectrum, which is assumed to be a
combination of slab plus 2D turbulence. This nonlinear guiding center theory (NLGC theory)
is based on the transverse motion of the particle gyro-center due to the random magnetic
field, and in addition, the particle moves diffusively along its orbit as it samples the random
magnetic field correlations, rather than along the quasilinear orbit.

Webb et al (2006) (hereinafter referred to as paper I) presented an analysis of compound
transport of cosmic rays across a random walking magnetic field, in which the probability
distribution function (pdf) P⊥(x, y, t |x0, y0, t0) for particles to cross the mean field is given by
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a Chapman–Kolmogorov equation, (e.g. Gardiner 1985) where the mean field 〈B〉 is along the
z-axis. The pdf P⊥ is given as the convolution of the probability distribution Pp‖(z, t |z0, t0)

for the particle to move a distance �z = z− z0 along the mean field in a time �t = t − t0, and
the pdf PFRW(x, y|z) is the random walking field consists of a step �x⊥ = (x − x0, y − y0, 0)

across the mean field direction corresponding to a step �z = z − z0 along the field. In
this model, the particle is trapped on the random walking field line. The field line random
walk statistics governed by PFRW(x, y|z) was taken as a Gaussian distribution with diffusion
coefficient DL = 〈(�x)2/(2�z)〉 = 〈(�y)2/(2�z)〉.

The origin of the so-called ‘dropouts’ observed in the low energy solar cosmic ray intensity
(∼20 keV–2 MeV H–Fe ions) observed by the ACE spacecraft (Mazur et al 2000) provided a
challenge to theoretical cross-field diffusion theory. Theoretical models of the dropouts were
proposed by Giacalone et al (2000), Zimbardo et al (2004), Ruffolo et al (2003), Kaghashvili
et al (2006) and Webb et al (2006). Webb et al (2006) studied the nature of cross-field
transport due to compound diffusion (also known as subdiffusion). Compound diffusion has
been inferred to occur in simulations of cross-field particle transport in slab turbulence (Mace
et al (2000), Qin et al (2002a, 2002b, 2003)). Shalchi (2005) used nonlinear guiding center
theory (NLGC theory) to obtain the subdiffusive result

〈
�x2

⊥
〉 ∝ (�t)1/2 for particle transport

across the mean magnetic field 〈B〉 in slab turbulence, which provides a theoretical explanation
of the simulations.

In this paper we extend the results of paper I, by allowing a more general propagator, Pp,

for particle propagation along and perpendicular to the local field. In particular, we consider
models for Pp that allow the particles to both drift along and perpendicular to the local field,
and also to diffuse across the random walking field. As in paper I, the probability distribution
P⊥(x, y, t |x0, y0, t0) is given as a convolution of the particle propagator Pp with the probability
distribution PFRW(x, y|z) describing the field line random walk. A brief account of this model
is given in Webb et al (2008). We find that at early times, the particles undergo compound
diffusion, with

〈
�x2

⊥
〉 ∝ �t1/2, but at late times, the particles have an effective cross-field

diffusion coefficient κ⊥e = κ⊥ + κF . The diffusion coefficient κ⊥ is the local cross-field
diffusion coefficient due to particle scattering in the random magnetic field. The diffusion
coefficient κF = |Vz|DL, where |Vz| is the net advection speed of the particles in bulk along
the mean field and DL = 〈�x2/2�z〉 is the field line random walk coefficient (x denotes the
distance across the mean field and z denotes the distance along the mean field). Our expression
for κF is similar to the perpendicular diffusion coefficient for field line random walk obtained
by Jokipii (1966) and Jokipii and Parker (1969), except that in their theory, Vz is replaced by
the particle speed along the field. The diffusion of particles across a random walking magnetic
field is somewhat analogous to the transverse spreading of water drops in a garden hose in
which there is a high-speed water jet passing through the hose when the water is turned on.
The fire hose instability causes the hose to writhe sideways. The analogy is not precise. Our
result for κF is similar to that of Chuvilgin and Ptuskin (1993), who studied particle transport
in a random magnetic field, with multiple scales (in their case the effective bulk velocity can
be identified with the Alfvén speed plus an effective drift speed).

Shalchi et al (2009a) explore the role of field line random walk and advection, drifts
and wave propagation effects on the cross-field transport of particles, with similar results to
this paper. They give an extensive description of the statistics of the field line random walk
〈�x2〉 ∝ |�z|α for the second moment for slab plus 2D turbulence and concentrate on the
second moment of the pdf P⊥. Our paper concentrates more on a generalized form of the
Chapman–Kolmogorov equation for cross-field transport and a detailed description of P⊥ not
addressed by Shalchi et al (2009a).
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Section 2 develops the Chapman–Kolmogorov transport equation for cross-field particle
transport in which Pp is described by an advection–diffusion equation for the particle transport
relative to the random walking field. The form of the Chapman–Kolmogorov equation for
P⊥ is significantly more complicated than in paper I, since Pp now allows for transport of
particles perpendicular to the random walking magnetic field as well as the effects of drifts.
The Laplace–Fourier transform form of P⊥ is determined and used to delineate the late time,
long space scale behavior of P⊥. It is also used to determine the short time and short space
scale behavior of P⊥. At late times, P⊥ satisfies an advection–diffusion equation, including
an enhanced cross-field diffusion of particles due to field line random walk and due to drifts
and advection parallel to the mean magnetic field as well as a fourth-order diffusion term
associated with compound diffusion. At early times, P⊥ satisfies a fractional Fokker–Planck
equation describing compound diffusion. The general form of the fractional Fokker–Planck
equation is determined by Fourier–Laplace inversion. A Hankel transform formulation of the
solution reduces the formula for P⊥ to a one-dimensional integral over the position coordinate
z along the field line, which reveals the intimate connection between field line random walk
and cross-field diffusion (see equation (2.64)). The moments of the probability distribution
P⊥ are investigated and the lower order moments are studied in detail. Section 3 presents
numerical solutions for P⊥ and discusses the form of P⊥ for different values of the parameters,
including the limit of compound diffusion studied by Webb et al (2006). Section 4 discusses
the role of enhanced cross-field diffusion due to field line random walk, and advection and drift
parallel to the mean field, and possible applications to the eleven year solar cycle modulation
of galactic cosmic rays. Section 5 concludes with a summary and discussion.

2. Three-dimensional diffusion and drift

In paper I, compound diffusion of particles due to random walk of the magnetic field lines was
modeled using the Chapman–Kolmogorov equation:

P⊥(x, y, t |x0, y0, t0) =
∫ ∞

−∞
dz PFRW(x, y|z; x0, y0, z0)Pp‖(z, t |z0, t0), (2.1)

where P⊥(x, t |x0, t0) is the probability that the particle moves a step �x⊥ = (x−x0, y−y0, 0)

across the mean magnetic field (assumed to lie along the z-axis) in a time �t = t − t0, PFRW is
the probability that the random field consists of a step �x normal to the mean magnetic field
corresponding to a step �z = z − z0 along the field and Pp‖(z, t |z0, t0) gives the probability
that the particle will move a distance �z along the field in a time �t .

In this paper, (2.1) is replaced by the generalized Chapman–Kolmogorov equation

P⊥(x, y, t |x0, y0, t0) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz PFRW(x1, y1|z; x0, y0, z0)

×Pp(x, y, z, t |x1, y1, z0, t0), (2.2)

which consists of the convolution of the field line random walk probability PFRW and the
particle probability density Pp describing the transport of the particle relative to the random
walking field line. In (2.2), account is taken of the transport of particles across the random
walking field, in moving from (x1, y1, z), the location on the field line, to the particle position
at (x, y, z) due to cross-field transport of the particles. The case of pure parallel transport
of particles along the field described by (2.1) is recovered if Pp = Pp‖δ(x − x1)δ(y − y1)

in (2.2).
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2.1. The model

The fundamental diffusive transport equation for cosmic rays in space plasmas, describing
convection, anisotropic diffusion, particle drifts and adiabatic energy changes, was originally
derived by Parker (1965) (see also Krymsky 1964). Further derivations of the equation,
including the effects of second-order Fermi acceleration, and different equivalent forms of
the equation, emphasizing different aspects of the physics, were obtained by Dolginov and
Toptygin (1967, 1968), Gleeson and Axford (1967), Jokipii and Parker (1970), Skilling (1975),
Webb and Gleeson (1979), Webb (1985, 1989), Earl et al (1988) and others. The transport
equation neglecting the effects of second-order Fermi acceleration can be written in the form

∂f

∂t
+ (u + VD) · ∇f − ∇ · (K(s) · ∇f ) − p

3
∇ · u

∂f

∂p
= 0, (2.3)

where f is the isotropic momentum–space distribution function for the energetic particles,
K(s) is the symmetric part of the cosmic ray diffusion tensor representing particle transport
due to diffusion parallel (κ‖) and perpendicular (κ⊥) to the mean magnetic field, u is the
velocity of the background plasma, and VD is the effective drift velocity of the particles due to
curvature and gradient drifts, and drifts parallel to the mean magnetic field. The drift velocity
VD is given by

VD = ∇×(κAeB), (2.4)

where eB = B/B is the unit vector along the mean magnetic field B. The drift velocity VD has
zero divergence (∇ · V D = 0), and in the weak scattering limit, κA 
 vrL/3 where v is the
particle speed and rL = pc/ZeB is the particle Larmor-radius, p is the particle momentum,
Ze the particle charge and c is the speed of light. In this limit, the drift velocity is equivalent
to that expected for a near isotropic distribution of particles in adiabatic, guiding center drift
theory (e.g., Kota (1979), Webb et al (1981), Burger et al (1985)). The drift velocity VD

can be decomposed into components parallel (VD‖) and perpendicular (VD⊥) to the mean
magnetic field in the form

VD = VD⊥ + VD‖, (2.5)

where

VD‖ = κA

B
∇ × B · eBeB, VD⊥ = VD − VD‖, (2.6)

where eB is the unit vector along the magnetic field B. In (2.6), VD⊥ is due to curvature and
gradient drifts (more generally the curvature drift is part of the so-called acceleration drift).
The particle velocity parallel to the magnetic field in drift theory consists of the component
of the particle velocity at the particle position parallel to the magnetic field, namely v cos θ (θ
is the particle pitch angle) plus a component vrL sin2 θ∇ × B/(2B)eB due to the difference
in the position of the guiding center and the particle in its orbit about the gyro-center. The
average of the latter term over a near isotropic pitch angle distribution gives the result for VD‖
in (2.6) with κA = vrL/3 appropriate for the weak scattering limit.

Below we consider a simplified analytical model of particle transport in a random
walking magnetic field, including the effects of anisotropic diffusion of particles parallel
and perpendicular to B, and including the effects of particle drifts. If we neglect the effects
of adiabatic energy changes in the Parker equation (2.3) and assume for analytical simplicity
that VD and K(s) can be regarded as constants, then (2.3) assumes the form

∂f

∂t
+ V · ∇f − κ‖

∂2f

∂z2
− κ⊥

(
∂2f

∂x2
+

∂2f

∂y2

)
= 0, (2.7)

5
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where V = u + VD is the total advection speed due to both the plasma bulk velocity u and the
drift velocity VD . Here the z-axis is along the mean magnetic field and the x- and y-axes are
orthogonal to B. The Chapman–Kolmogorov-type equation for particle transport in a random
walking magnetic field analogous to (2.1) is

P⊥(x, y, t |x0, y0, t0) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz PFRW(x1, y1|z)

×Pp‖(z, t |z0, t0)Pp⊥(x, y, t |x1, y1, t0), (2.8)

where

PFRW(x1, y1|z) = 1

4πDL|z − z0| exp

(
− (x1 − x0)

2 + (y1 − y0)
2

4DL|z − z0|
)

(2.9)

is the probability distribution describing the field line random walk. The probability
distribution

Pp‖(z, t |z0, t0) = 1

(4πκ‖�t)1/2
exp

(
− (z − z0 − Vz�t)2

4κ‖�t

)
H(�t), (2.10)

where �t = t − t0, describes particle transport parallel to the mean magnetic field. The
probability distribution

Pp⊥(x, y, t |x1, y1, t0)

= 1

4πκ⊥�t
exp

(
− (x − x1 − Vx�t)2 + (y − y1 − Vy�t)2

4κ⊥�t

)
(2.11)

describes particle transport perpendicular to B0. Note that the probability distribution
Pp = Pp‖Pp⊥ obtained from (2.10) and (2.11) is the Green’s function of the drift–advection–
diffusion equation (2.7).

It is of interest to note that

lim
κ‖�t→0

Pp‖(z, t |z0, t0) = δ(z − z0 − Vz�t), (2.12)

lim
κ⊥�t→0

Pp⊥(x, y, t |x1, y1, t0) = δ(x − x1 − Vx�t)δ(y − y1 − Vy�t). (2.13)

In particular, if Vx = 0 and Vy = 0, then taking the limit as κ⊥ → 0 and using (2.13) in (2.8)
we recover the case where the particles are tied to the field lines and there is no cross-field drift.
The limiting cases κ‖�t → 0 and κ⊥�t → 0 in (2.12) and (2.13) suggest that drift effects are
similar in some respects to the ballistic transport case described by the telegrapher equation
propagator (see Webb et al (2006)), in that both models give rise to cross-field diffusion due
to field line random walk and non-stochastic particle motion along the field.

2.2. Probability distribution and Fourier–Laplace transforms

In the analysis of the probability distribution (2.8), it is convenient to use the transverse
position coordinates

x̃ = x − x0 − Vx�t, ỹ = y − y0 − Vy�t (2.14)

and the corresponding polar coordinates (r̃, φ), where

x̃ = r̃ cos φ, ỹ = r̃ sin φ. (2.15)

6
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In terms of these coordinates, the probability distribution (2.11) for particle transport
perpendicular to the mean magnetic field is given by

P̃p⊥(x̃, ỹ, t |x0, y0, t0) = 1

4πκ⊥�t
exp

(
− (x̃ + x0 − x1)

2 + (ỹ + y0 − y1)
2

4κ⊥�t

)
, (2.16)

where P̃p⊥(x̃, ỹ, t |x0, y0, t0) ≡ Pp⊥(x, y, t |x0, y0, t0). The analysis below shows that the
probability distribution for particle transport across the field, P⊥, can be expressed in terms of
r̃ and �t and is independent of the azimuthal angle position coordinate φ.

It is also useful to consider the characteristic function

P̂⊥(k1, k2, t) =
∫ ∞

−∞
dx̃

∫ ∞

−∞
dỹ exp[i(k1x̃ + k2ỹ)]P⊥(x, y, t |x0, y0, t0). (2.17)

The characteristic function P̂⊥(k1, k2, t) can be used to calculate the moments of P⊥ of
form 〈x̃mỹn〉 in the usual way by evaluating the derivatives of the characteristic function
∂m∂nP̂⊥

/
∂km

1 ∂kn
2 at k = 0.

Using (2.9), (2.10) and (2.16) for PFRW, Pp‖ and Pp⊥ in (2.17) we obtain

P̂⊥ =
∫ ∞

−∞
dx̃

∫ ∞

−∞
dỹ

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz

exp[i(k1x̃ + k2ỹ)]

(4πDL|�z|)(4πκ⊥�t)(4πκ‖�t)1/2

× exp

(
− (x1 − x0)

2 + (y1 − y0)
2

4DL|�z| − (x̃ + x0 − x1)
2 + (ỹ + y0 − y1)

2

4κ⊥�t

− (�z − Vz�t)2

4κ‖�t

)
, (2.18)

where �z = z − z0 and �t = t − t0. Carrying out the integrals with respect to x̃ and ỹ in
(2.18), we obtain

P̂⊥ =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dz

exp
[−κ⊥k2

⊥�t + ik1(x1 − x0) + ik2(y1 − y0)
]

(4πDL|�z|)(4πκ‖�t)1/2

× exp

(
− (x1 − x0)

2 + (y1 − y0)
2

4DL|�z| − (�z − Vz�t)2

4κ‖�t

)
, (2.19)

where k2
⊥ = k2

1 + k2
2. Next carrying out the integrals with respect to x1 and y1, we obtain the

one-dimensional integral

P̂⊥ =
∫ ∞

−∞
d�z

1

(4πκ‖�t)1/2
exp

(
−κ⊥k2

⊥�t − k2
⊥DL|�z| − (�z − Vz�t)2

4κ‖�t

)
, (2.20)

for P̂⊥. The important point to note in (2.20) is that P̂⊥ is a function of k2
⊥ and �t , and hence

is azimuthally symmetric in k-space.
By carrying out the integral over �z in (2.20), P̂⊥ can be expressed in terms of the

complementary error function erfc(z) in the form

P̂⊥ = 1

2
exp

(
−κ⊥k2

⊥�t − V 2
z �t

4κ‖

)

×[
exp(λ2

−�t) erfc(λ−
√

�t) + exp
(
λ2

+�t
)
erfc(λ+

√
�t)

]
, (2.21)

7
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where

λ± = k2
⊥DLκ

1/2
‖ ∓ Vz

2κ
1/2
‖

, (2.22)

(see Abramowitz and Stegun (1965), chapter 7, p 395 for detailed properties of the
complementary error function).

By using the Laplace transform∫ ∞

0
exp(−pt) exp(a2t)erfc(at) dt = 1√

p(
√

p + a)
, (2.23)

(Erdelyi et al (1954), vol 1, formula 7, p 234), the Laplace transform of (2.21) with respect to
�t is

P̃⊥(s, k⊥) = 1

2
√

σ

(
1√

σ + λ+
+

1√
σ + λ−

)
, (2.24)

where

σ = s + k2
⊥κ⊥ +

V 2
z

4κ‖
. (2.25)

The transform (2.24) gives the transform of P⊥ in the Fourier–Laplace space.

2.3. Asymptotics

The asymptotic evolution equation for P⊥(x̃⊥, t) at large space and time scales can be
determined from the behavior of P̃ (k⊥, s) as s → 0 and as k⊥ → 0. Similarly, the evolution
equation for P⊥(x̃⊥, t) at early time and short space scales is associated with the behavior of
P̃ (k⊥, s) as s → ∞ and k⊥ → ∞. We first note from (2.24) and (2.25) that

�(k⊥, s)P̃⊥(k⊥, s) = 1, (2.26)

where

�(k⊥, s) =
√

σ(
√

σ + λ+)(
√

σ + λ−)√
σ + λ̄

, (2.27)

λ± = k2
⊥DL

√
κ‖ ∓ √

νcd, λ̄ = k2
⊥DL

√
κ‖, (2.28)

σ = s + k2
⊥κ⊥ + νcd, νcd = V 2

z

4κ‖
. (2.29)

Here νcd ≡ 1/τcd = V 2
z

/
(4κ‖), τcd is the convection–drift–diffusion time scale parallel to the

magnetic field B and �cd = κ‖/Vz is the corresponding length scale.

2.3.1. Late time and long space scale expansion. Lowest order balance of terms for small s
and k2

⊥ with s ∼ k2
⊥ in (2.26) gives

� = s + k2
⊥κ⊥ + κF k2

⊥ − κ2
F

4νcd
k4
⊥ + O(s3), κF = |Vz|DL. (2.30)

Here, κF = |Vz|DL is the perpendicular diffusion due to field line random walk and the bulk
advective transport of particles parallel to B.

Using the usual Laplace–Fourier transform associations

s → ∂t , k → −i∇, k2
⊥ → −∇2

⊥, (2.31)

8
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(2.26) and (2.30) give the long wavelength and long time scale evolution equation:[
∂t − (κ⊥ + κF )∇̃2

⊥ − κ‖D2
L∇̃4

⊥
]
P⊥(x̃⊥, t) = δ(x̃⊥)δ(t), (2.32)

for P⊥(x̃⊥, t). Since x̃⊥ = x⊥ − V⊥t , (2.32) may be rewritten in the form[
∂t + V⊥ · ∇⊥ − (κ⊥ + κF )∇2

⊥ − κ‖D2
L∇4

⊥
]
P⊥(x̃⊥, t) = δ(x̃⊥)δ(t). (2.33)

Thus, at late times and long length scales, the cross-field diffusion coefficient κeff
⊥ = κ⊥ + κF

consists of the kinetic, (microscopic) perpendicular diffusion coefficient, plus the field line
random walk diffusion coefficient κF = |Vz|DL due to bulk advection and drift parallel to
B. The higher order, fourth derivative term −κ‖D2

L∇4
⊥ represents the late time effects of

compound diffusion.

2.3.2. Early time, short space scale expansion. �(k⊥, s) in (2.27) may be rewritten in the
form

�(k⊥, s) = σ

(
1 +

λ̄√
σ

− νcd√
σ(

√
σ + λ̄)

)
. (2.34)

At early times and short length scales, balance of the first two terms in large parentheses in
(2.34) requires that s scale as s ∼ k4

⊥ as s → ∞. Thus, as s → ∞ and k⊥ → ∞ we obtain

�(k⊥, s) = s
[
1 + DLκ

1/2
‖ s−1/2k2

⊥ + O
(
k−2
⊥

)]
. (2.35)

Using (2.35) in (2.26) and inverting back to (x̃, t) space, we obtain

∂t

[
1 − DLκ

1/2
‖ (∂t )

−1/2∇̃2
⊥
]
P⊥(x̃⊥, t) = δ(x̃⊥)δ(t), (2.36)

as the evolution equation for P⊥(x̃⊥, t). Equation (2.36) is the fractional Fokker–Planck
equation for compound diffusion (Sokolov et al (2002), Webb et al (2006), see also below for
further discussion).

In the following subsection, we use (2.24) to formulate the Chapman–Kolmogorov
equation (2.8) as a fractional Fokker–Planck equation.

2.4. Fractional Fokker–Planck equations

By using the Laplace–Fourier transform associations (2.31), the Laplace transform equation
(2.25) for P̃⊥ can be inverted to yield a fractional diffusion equation for P⊥ in the form

L
[
L − √

νcd − DL

√
κ‖∇2

⊥
] [

L +
√

νcd − DL

√
κ‖∇2

⊥
]

× {
L − DL

√
κ‖∇2

⊥
}−1

P⊥ = δ(x⊥)δ(t), (2.37)

where νcd = V 2
z /(4κ‖) is given by (2.29), and the pseudo-differential operator L is defined by

L = (
∂t − κ⊥∇2

⊥ + νcd
)1/2

and L2 = ∂t − κ⊥∇2
⊥ + νcd. (2.38)

The Case Vz = 0. In the special case Vz = 0, (2.37) simplifies to the equation(
∂t − κ⊥∇2

⊥
) [

1 − DL

√
κ‖

(
∂t − κ⊥∇2

⊥
)−1/2 ∇2

⊥
]
P⊥ = δ(x⊥)δ(t). (2.39)

In the limit as κ⊥ → 0, (2.39) reduces to the standard compound diffusion equation

∂t

[
P⊥ − DL

√
κ‖∂

−1/2
t ∇2

⊥P⊥
] = δ(x⊥)δ(t), (2.40)

where

∂
−β
t f (t) = 1

�(β)

∫ t

0
(t − t ′)β−1f (t ′) dt ′ (2.41)

9
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is the Riemann–Liouville fractional integral (e.g., Erdelyi et al (1954), vol 2, p 181, Sokolov
et al (2002)). Thus, in (2.40),

∂
−1/2
t f (t) = 1√

π

∫ t

0
(t − t ′)−1/2f (t ′) dt ′, (2.42)

and ∂−1
t f (t) = ∫ t

0 f (t ′) dt ′. The half-time derivative operator ∂
1/2
t is defined by the equation

∂
1/2
t = ∂t∂

−1/2
t . Using (2.39)–(2.42) we obtain

∂P⊥
∂t

− DL

√
κ‖∂t

{
1√
π

∫ t

0
(t − t ′)−1/2∇2

⊥P⊥(x, t ′) dt ′
}

= δ(x⊥)δ(t), (2.43)

which is the fractional diffusion equation obtained by Webb et al (2006) to describe compound
diffusion of cosmic rays in the case where the particles only diffuse parallel to the random
walking magnetic field. The integral term in curly brackets in (2.43) is ∂

−1/2
t ∇2

⊥P⊥.
In the more general case where κ⊥ �= 0 and Vz = 0, use of the Laplace–Fourier

correspondence (2.31) gives

−(
∂t − κ⊥∇2

⊥
)−1/2 ∇2

⊥P⊥(x, y, t)

=
∫ ∞

−∞

d2k

4π2

∫ c+i∞

c−i∞

ds

2π i

exp[st − i(k1x + k2y)]√
s + k2

⊥κ⊥
k2
⊥P̃⊥(k, s), (2.44)

for the integral-differential operator in (2.39). Using the convolution theorem for both the
Fourier and Laplace transforms in (2.44) we obtain the integral representation(
∂t − κ⊥∇2

⊥
)−1/2 ∇2

⊥P⊥(x, y, t)

=
∫ t

0

dt ′√
π(t − t ′)

∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′G(x, y, t |x ′, y ′, t ′)∇′2

⊥P⊥(x ′, y ′, t ′), (2.45)

where

G(x, y, t |, x ′, y ′, t ′) = 1

4πκ⊥(t − t ′)
exp

(
− (x − x ′)2 + (y − y ′)2

4κ⊥(t − t ′)

)
H(t − t ′) (2.46)

is the 2D Green’s function of the heat equation (∂t − κ⊥∇2
⊥)ψ = 0, and H(t − t ′) is the

Heaviside step function.

Comment 1. In the limit as κ⊥t → 0, the Green’s function G in (2.46) tends to the product of
two Dirac delta functions, i.e., G → δ(x − x ′)δ(y − y ′) and the pseudo-differential operator(
∂t − κ2

⊥∇2
⊥
)−1/2 → ∂

−1/2
t , and we recover compound diffusion equation (2.40) considered

by Webb et al (2006).

Comment 2. The Green’s function G for the case κ⊥ �= 0 consists of a Gaussian pulse, which
can be thought of as a broadened delta function pulse. For the κ⊥ = 0 case considered by
Webb et al (2006) (see also Sokolov et al (2002)), the pdf P⊥ for compound diffusion has
a cusp at x = 0. The effect of a finite nonzero κ⊥ on this pdf will be to smooth out the
distribution so that there is no cusp in P⊥ at x = 0.

Comment 3. Since P⊥(x, y, t) is cylindrically symmetric (i.e., only depends on r =
√

x2 + y2

and t), use of cylindrical coordinates r and θ in (2.45) gives

(
∂t − κ⊥∇2

⊥
)−1/2∇2

⊥P⊥(r, t) =
∫ t

0

dt ′√
π(t − t ′)

∫ ∞

0
dr ′r ′�(r, t |r ′, t ′)∇′2

⊥P⊥(r ′, t ′), (2.47)

10
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where ∇2
⊥P⊥ ≡ (1/r)∂r(r∂rP⊥) and

�(r, t |r ′, t ′) = 1

2κ⊥(t − t ′)
exp

(
− r2 + r

′2

4κ⊥(t − t ′)

)
I0

(
rr ′

2κ⊥(t − t ′)

)
H(t − t ′) (2.48)

is the Green’s function of the cylindrically symmetric heat equation:

∂�

∂t
− κ⊥

r

∂

∂r

(
r
∂�

∂r

)
= δ(r − r ′)δ(t − t ′)

r ′ , (2.49)

and I0(z) is the modified Bessel function of the first kind of order zero. The result (2.47) can
be obtained by converting the integrals over (x ′, y ′) in (2.45) to integrals over r ′ and θ ′ where
x ′ = r ′ cos θ ′ and y ′ = r ′ sin θ ′, and by using the generating function identity

exp(z cos θ) = I0(z) + 2
∞∑

n=1

In(z) cos(nθ), (2.50)

where In(z) is the modified Bessel function of the first kind of order n (Abramowitz and Stegun
(1965), formula 9.6.34, p 376).

The general case κ⊥, κ‖,DL and Vz all nonzero. In the general case where κ⊥, κ‖, Vz and
DL are all nonzero, the Laplace–Fourier inversion of (2.26) gives the integral-differential
evolution equation(
∂t − κ⊥∇2

⊥ + νcd
) {P⊥(r̃, t) − DL

√
κ‖I1 [P⊥(r̃, t)] − νcdI2 [P⊥(r̃, t)]} = δ(x̃⊥)δ(t),

(2.51)

where

−DL

√
κ‖I1 [P⊥(r̃, t)] = L−1

(
λ̄√
σ

P̃⊥(k⊥, s)

)
, (2.52)

I2 [P⊥(r̃, t)] = L−1

(
P̃⊥(k⊥, s)√
σ(

√
σ + λ̄)

)
(2.53)

denote the inverse Fourier–Laplace transforms associated with �(k⊥, s) in (2.34). The term
(2.52) is associated with compound diffusion and field line random walk. The last term on the
left-hand side of (2.51) is due to advection and drift, since it is proportional to νcd = V 2

z /(4κ‖).
It is zero if Vz = 0.

Using the convolution for Fourier–Laplace transforms in (2.52) we obtain

I1 [P⊥(r̃, t)] =
∫ t

0
dt ′

dt ′√
π(t − t ′)

exp[−νcd(t − t ′)]

×
∫ ∞

0
dr ′r ′�(r̃, t |r ′, t ′)∇′2

⊥P⊥(r ′, t ′), (2.54)

where �(r̃, t |r ′, t ′) is the Green’s function of the cylindrically symmetric heat equation (2.48).
Thus, I1 is the generalization of the non-local diffusion operator (2.45) for cases where
νcd = V 2

z

/
(4κ‖) �= 0.

A similar Fourier–Laplace inversion of (2.53) gives

I2 [P⊥(r̃, t)] =
∫ t

0
dt ′

∫ ∞

0
dr ′r ′

∫ ∞

0
dζ

exp(−ζ 2) exp(−νcd�t)√
π�(ζ,�t)

× exp

(
− r̃2 + r

′2

4�(ζ,�t)

)
I0

(
r̃r ′

2�(ζ,�t)

)
P⊥(r ′, t ′), (2.55)

11
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where

�(ζ,�t) = κ⊥�t + 2ζDL

√
κ‖

√
�t, �t = t − t ′. (2.56)

The presence of the exp(−ζ 2) term in (2.55) indicates that the dominant contribution to the
ζ integral will, in general come from near ζ ≈ 0. The parameter ζ in (2.56) controls the
relative importance of regular cross-field diffusion represented by κ⊥�t and that of compound
diffusion represented by 2ζDL

√
κ‖

√
�t .

2.5. Hankel transform formulation

Using the standard formula for the inverse Fourier transform in (2.17) we obtain

P⊥ = 1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 exp[−i(k1x̃ + k2ỹ)]P̂⊥(k1, k2, t). (2.57)

Since P̂⊥ depends only on k⊥ = (
k2

1 + k2
2

)1/2
and �t , it is convenient to use cylindrical polar

coordinates in k-space, with polar axis along the k3- or kz-direction, and with (k1, k2) =
k⊥(cos �, sin �), and also to use polar coordinates in (x̃, ỹ)-space, with (x̃, ỹ) =
r̃(cos φ, sin φ) as in (2.15). Then noting that

k1x̃ + k2ỹ = k⊥r̃ cos(� − φ) (2.58)

and using the generating function identity for Bessel functions (Abramowitz and Stegun
(1965), formula 9.1.41, p 361), it follows that

exp(−ik · r̃) =
∞∑

n=−∞
exp

[
− in

(
π

2
+ φ − �

)]
Jn(k⊥r̃). (2.59)

Then converting to polar coordinates in k-space in (2.57), noting that dk1dk2 = k⊥dk⊥d� and
carrying out the integration over the azimuthal angle �, we obtain

P⊥ = 1

2π

∫ ∞

0
dk⊥k⊥J0(k⊥r̃)P̂ (k⊥, t). (2.60)

The integrals over � for the separate Bessel function terms in the series for n �= 0 vanish
identically because of the periodicity of the exp(−in�) terms in (2.59). Equation (2.60) shows
that P⊥ depends only on r̃ and t.

Similarly, using polar coordinates r̃ and φ, and (2.58) and (2.59) in (2.17) we obtain

P̂⊥(k⊥, t) = 2π

∫ ∞

0
dr̃ r̃J0(k⊥r̃)P⊥(r̃, t), (2.61)

where in an abuse of mathematical notation, we use P⊥(r̃, t) and P̂⊥(k⊥, t) to denote P⊥(x̃, ỹ,

t |x0, y0, t0) and P̂⊥(k1, k2, t), respectively.
Equations (2.60) and (2.61) show that P̂ (k⊥, t) and P⊥(r̃, t) form a Hankel transform

pair (e.g., Erdelyi et al (1954), vol 2, p 3; note that the normalization used in our definition
is different than that used by Erdelyi et al (1954)). From (2.20) or (2.21) it follows that
P̂⊥(0, t) = 1. Using this result in (2.57) shows that the double integral of P⊥ over the whole
(x̃, ỹ) plane is equal to 1, and hence P⊥ is a properly normalized probability distribution.

Using the expression (2.20) for P̂⊥ in (2.60) we obtain

P⊥ =
∫ ∞

−∞

d�z

(4πκ‖�t)1/2
exp

(
− (�z − Vz�t)2

4κ‖�t

)

× 1

2π

∫ ∞

0
dk⊥k⊥J0(k⊥r̃) exp

[−k2
⊥(κ⊥�t + DL|�z|)] . (2.62)

12
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Then carrying out the k⊥ integral using the Laplace transform:∫ ∞

0
exp(−pt)J0

(
2α1/2t1/2

)
dt = 1

p
exp

(
−α

p

)
, (2.63)

(Erdelyi et al (1954), vol 1, formula 25, p 185) with the replacements t → k2
⊥, p →

κ⊥�t + DL|�z|, α → r̃2/4, we obtain

P⊥ =
∫ ∞

−∞

d�z

(4πκ‖�t)1/2

1

4π(κ⊥�t + DL|�z|)

× exp

(
− (�z − Vz�t)2

4κ‖�t
− r̃2

4(κ⊥�t + DL|�z|)
)

. (2.64)

Hence, the probability distribution P⊥(r̃, t) can be determined by evaluating the integral (2.64).
Equation (2.64) for P⊥ is one of the main results for the paper. It can be used to determine

the moments of P⊥ (section 2.6 and appendix A). If DL = 0, use of (2.64) gives the heat
equation Green’s function for cross-field diffusion due to κ⊥. The compound diffusion case for
cylindrical symmetry about the z-axis (the mean field direction) is recovered if Vz = κ⊥ = 0
(section 3). The integral form (2.64) is also important for the numerical evaluation of P⊥
(section 3).

2.6. Moments

The nth order moment of r̃ is defined as

〈r̃n〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy P⊥(x̃, ỹ, t)r̃n ≡ 2π

∫ ∞

0
dr̃ r̃n+1P⊥(r̃, t). (2.65)

Other moments such as 〈x̃mỹn〉 are defined in a similar fashion. In particular, one finds
that all odd order moments of form 〈x̃mỹn〉 where m + n = 2N + 1 are zero (e.g.,
〈x̃3〉 = 〈r̃3〉〈cos3 φ〉 = 0). Note that the odd moments 〈r̃2n+1〉 are nonzero. For the second-
order moments:

〈x̃2〉 = 〈ỹ2〉 = 1
2 〈r̃2〉, 〈x̃ỹ〉 = 0. (2.66)

The third-order moments of form 〈x̃mỹn〉 with m + n = 3 are all zero, but 〈r̃3〉 �= 0. For the
fourth-order moments:

〈x̃4〉 = 〈ỹ4〉 = 3
8 〈r̃4〉, 〈x̃2ỹ2〉 = 1

8 〈r̃4〉. (2.67)

By using the Taylor series expansion for J0(k⊥r̃) in (2.61) and equating powers of k2n
⊥ it

follows that

〈r̃2n〉 = (−1)n4nn!

(
dnP̂⊥
d(k2

⊥)n

)
0

, (2.68)

This formula can be used to calculate the even moments of r̃ , but it cannot be used to determine
the odd moments 〈r̃2n+1〉.

A method for calculating the moments 〈r̃n〉 for both odd and even n is described in
appendix A. From (A.11) we obtain

〈x̃2〉 = 2κ⊥t + 2DLVzt erf

(
Vzt

1/2

2κ
1/2
‖

)
+ 4

(
κ‖D2

Lt

π

)1/2

exp

(
−V 2

z t

4κ‖

)
, (2.69)

for the nonzero, second-order moment 〈x̃2〉 (note that 〈ỹ2〉 = 〈x̃2〉 and 〈r̃2〉 = 2〈x̃2〉). Without
loss of generality, we have set t0 = 0 in (2.69) so that �t → t . This convention will be
applied to all formulae in the following analysis. Formulae (2.69) show the mutual interaction
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of microscopic cross-field diffusion (κ⊥), parallel diffusion (κ‖), field line random walk
(DL) and drift/advection (Vz) on the cross-field particle transport across the random walking
magnetic field.

Using the power series expansion of the exponential function and the error function for
small arguments (Abramowitz and Stegun (1965, formula 7.1.5, p 297 )) in (2.69), we find

〈x̃2〉 = 〈ỹ2〉 ≈ 2κ⊥t +
DLV 2

z

(πκ‖)1/2
t3/2 + 4

(
κ‖D2

L

π

)1/2

t1/2

≈ 4

(
κ‖D2

L

π

)1/2

t1/2, (2.70)

in the limit of small t. Thus, at early times, the particle propagation across the field in this
model is subdiffusive and behaves according to the compound diffusion model (e.g., Kota
and Jokipii (2000), Webb et al (2006)), in which particles are confined to move diffusively
along the random walking magnetic field line. However, if one uses the telegrapher equation
model, in which there is ballistic particle transport along the magnetic field at early times,
with no cross-field diffusion (κ⊥ = 0) and drift, then the particle transport across the field is
diffusive due to the combined effects of random walking field lines and ballistic transport with
〈(�x)2〉 ∼ vDLt (Webb et al (2006)).

Using the asymptotic expansion for erfc(z) = 1 − erf(z) for large |z| (Abramowitz and
Stegun (1965), formula 7.1.23, p 298) in (2.69), we obtain

〈x̃2〉 = 〈ỹ2〉 ≈ 2(κ⊥ + VzDL)t + 8

(
κ‖D2

L

πt

)1/2
κ‖
V 2

z

exp

(
−V 2

z t

4κ‖

)
≈ 2(κ⊥ + VzDL)t, (2.71)

in the limit as t → ∞. Hence at late times, (2.71) shows that the particle transport across the
field is diffusive with an effective diffusion coefficient

κ⊥e = 〈x̃2〉
2t

= 〈ỹ2〉
2t

= κ⊥ + VzDL. (2.72)

The result (2.72) shows that the effective cross-field diffusion coefficient at late times consists
of the microscopic perpendicular diffusion coefficient κ⊥ plus a field line random walk
contribution κFRW

⊥ = VzDL (see also Webb et al (2008), Shalchi et al (2009a)).
The effective running diffusion coefficient for cross-field transport κ⊥e = 〈x̃2〉/(2t) is

given by

κ⊥e = κ⊥ + DLVz erf

(
Vzt

1/2

2κ
1/2
‖

)
+ 2

(
κ‖D2

L

πt

)1/2

exp

(
−V 2

z t

4κ‖

)
. (2.73)

One can show that κ⊥e(t) is a monotonic decreasing function of t, with κ⊥e ∼ 2
√

κ‖/πDLt−1/2

at small t (i.e., subdiffusion at small t), and with κ⊥e → κ⊥ + VzDL as t → ∞. Note that the
classical compound diffusion term in (2.69), (the last term on the right-hand side) is strongly
damped at late times if Vz �= 0. However, if Vz = 0, then it scales like t1/2 and is not damped
exponentially at late times.

The effective cross-field diffusion coefficient in (2.73) can be written in the dimensionless
form

κ̄⊥e = α + β

[
erf

(
1

2

√
t̄

)
+

2√
πt̄

exp

(
− t̄

4

)]
, (2.74)

where κ̄⊥e(t̄) = κ⊥e/κ‖. Here t̄ = V 2
z t/κ‖ and x̄ = Vzx/κ‖ are dimensionless time and space

coordinates, based on the advection–diffusion time and length scales. The parameters

α = κ⊥
κ‖

, β = |Vz|DL

κ‖
= κF

κ‖
, κF = |Vz|DL (2.75)
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Figure 1. shows the effective perpendicular diffusion coefficient κ̄⊥e(t̄) of (3.15) versus t̄ for the
case α = 0.1 and β = 0.2 where t̄ = t/T2 and T2 = κ‖/V 2

z is the advection–diffusion time scale.
In the left panel 0 < t̄ < 1.6, but 0 < t̄ < 6 for the right panel.

describe the effects of local cross-field diffusion (α) and cross-field diffusion due to field line
random walk (β).

Figure 1 shows a plot of κ̄⊥e versus t̄ for the case α = 0.1 and β = 0.2. The running
diffusion coefficient κ̄⊥e is a monotonic decreasing function of t̄ , with κ̄⊥e ∝ t̄−1/2 at small t̄ ,
during the compound diffusion phase, and κ̄⊥e → α + β as t̄ → ∞ in the late time diffusion
phase. The horizontal dashed line corresponds to the value of the perpendicular diffusion
coefficient obtained in the absence of field line random walk. The compound diffusion phase
is delimited by the requirement that the particle must have undergone many scatters along
the field line. This requires that t � T1 = D2

L

/
κ‖ or t̄ � β2. The vertical dashed line

corresponds to the condition t̄ = β2. For t̄ < β2 other physical effects not included in the
model come into play (e.g., non-diffusive particle transport, ballistic or telegrapher equation
effects and field line decorrrelation effects due to the magnetic field stochastic instability (e.g.,
Rechester and Rosenbluth et al (1978)).

The higher order moments are useful in elucidating different physical effects. For example,
one can show that

〈x̃4〉 = 〈ỹ4〉 = 12C2, 〈x̃2ỹ2〉 = 4C2, 〈r̃4〉 = 32C2, (2.76)

where C2 and the associated integrals I±
4 are defined in appendix A. We obtain the formulae

C2 = I−
4 + I+

4 ≡ (
d2P̂⊥

/
d
(
k2
⊥
)2)

0. (2.77)

Evaluation of (2.77) gives

C2 =
[
κ2

⊥ + (VzDL)2 + 2κ⊥VzDL erf

(
Vzt

1/2

2κ
1/2
‖

)]
t2

+ 2κ‖D2
Lt + 2κ⊥t

(
4κ‖D2

Lt

π

)1/2

exp

(
−V 2

z t

4κ‖

)
. (2.78)

Note that the compound diffusion term 2κ‖D2
Lt in (2.78) is not exponentially damped and

persists at large times. In fact at late times t → ∞,

C2 ≈ (κ⊥ + VzDL)2t2 + 2κ‖D2
Lt,

〈x̃4〉 = 〈ỹ4〉 ≈ 12
[
(κ⊥ + VzDL)2t2 + 2κ‖D2

Lt
]
.

(2.79)
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Hence, at late times, the behavior of the moments (2.79) indicates that at the lowest order the
transport across the field is normal diffusion with diffusion coefficient (2.72). However, there
is a higher order contribution at intermediate times from compound diffusion (the t term in
(2.79)). At early times (t → 0),

C2 ≈ 2κ‖D2
Lt, 〈x̃4〉 = 〈ỹ4〉 ≈ 24κ‖D2

Lt, (2.80)

which indicates that compound diffusive behavior (i.e., subdiffusive behavior) is obtained at
early times.

3. Solution examples

We first note that the solution (2.64) for P⊥ can be reduced to the dimensionless form by the
introduction of dimensionless space and time variables:

x̄ = x
L

, t̄ = t

T
, (3.1)

where L and T are characteristic length and time scales. Without loss of generality, we replace
�x by x and �t by t, in the following analysis (i.e., we set x0 = 0 and t0 = 0). Using the
variables (3.1), the solution (2.64) for P⊥ can be written in the dimensionless form

p⊥ = P⊥L2 =
∫ ∞

−∞

dθ√
π

exp[−θ2 − r̄2/(4ζ )]

4πζ
, (3.2)

where

ζ = κ̄⊥ t̄ + D̄L|V̄zt̄ + 2(κ̄‖ t̄ )1/2θ |. (3.3)

Here, κ̄⊥, κ̄‖, D̄L and V̄z are dimensionless versions of κ⊥, κ‖,DL and Vz, namely,

κ̄⊥ = κ⊥T

L2
, κ̄‖ = κ‖T

L2
, D̄L = DL

L
, V̄z = VzT

L
. (3.4)

In general, the moments of P⊥ can be expressed in the dimensionless form. In particular,
from (2.64) we obtain 〈x̄2〉 = 〈ȳ2〉 with

〈x̄2〉 = 2κ̄⊥ t̄ + 2(D̄LV̄z)t̄ erf

(
V̄zt̄

1/2

2κ̄
1/2
‖

)
+ 4

(
κ̄‖D̄2

Lt̄

π

)1/2

exp

(
− V̄ 2

z t̄

4κ̄‖

)
, (3.5)

as the dimensionless form of the variances 〈x̄2〉 and 〈ȳ2〉 of P⊥.
The main points to note about the solution (3.2)–(3.3) for p⊥ and the variance formulae

(3.5) are that they depend on the four independent parameters κ̄⊥, κ̄‖, D̄L and V̄z listed in (3.4).
Before presenting numerical examples of the solutions for p⊥ and the variances, it is

instructive to consider special cases of the solution for p⊥. If we set κ̄‖ = 0 in (3.2) and (3.3)
we obtain the heat equation Green’s function solution

p⊥ = 1

4πκ̄pt̄
exp

(
− r̄2

4κ̄pt̄

)
, (3.6)

where κ̄p = κ̄⊥ + |V̄z|D̄L is the effective cross-field diffusion coefficient for the particles, due
to local cross-field diffusion (κ̄⊥), and due to field line random walk (κ̄F = |V̄z|D̄L). In this
mathematical limit, there is no parallel diffusion (this limit cannot be obtained physically,
since κ⊥ < κ‖ in standard quasilinear theory with no field line random walk, but it is possible
that both κ⊥ and κ‖ are small), the particles undergo bulk advection along the magnetic field,
with speed |V̄z|, and the particles diffuse perpendicular to the mean field. This situation is
mathematically analogous to the case of ballistic transport of particles along the field, in which
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the particle velocity vz has been replaced by the bulk advection speed |Vz|, and the particles
undergo cross-field diffusion due to field line random walk (e.g., Jokipii and Parker (1969)).
Similarly, if we set D̄L = 0, there is no field line random walk, and the solution (3.2)–(3.3)
for p⊥ again reduces to the heat equation Green’s function (3.6), except that now κ̄p = κ̄⊥ is
due solely to local cross-field diffusion.

A further interesting limit of the solution (3.2)–(3.3) for p⊥ is obtained by setting
κ̄⊥ = V̄z = 0. In this limit, the solution for p⊥ reduces to

p⊥ =
∫ ∞

−∞

dθ√
π

1

8πD̄L(κ̄‖ t̄ )1/2|θ | exp

(
−θ2 − r̄2

8D̄L(κ̄‖ t̄ )1/2|θ |
)

. (3.7)

The solution (3.7) describes cross-field transport due to compound diffusion (e.g., Kota and
Jokipii (2000), Webb et al (2006)). It is equivalent to the inverse Laplace transform solution for
p⊥ given by Webb et al (2006) (equation (3.24)), in which there is cylindrical symmetry about
the background magnetic field. In appendix B, we show that the solution can be expressed
in terms of a Meijer G function (e.g., Erdelyi et al (1953) Higher Transcendental Functions
vol 1, p 206, section 5.3). It was noted in Webb et al (2006) that p⊥ ∼ (C/

√
t) ln(r2/

√
t)

as r → 0 for the compound diffusion solution (3.7), where C is a constant. Note that the
solution(3.7) depends on the similarity variable r̄2/

√
t̄ characteristic of compound diffusion.

For the solution (3.7), the variance (3.5) reduces to

〈x̄2〉 = 〈ȳ2〉 = 4

(
κ̄‖D̄2

Lt̄

π

)1/2

, (3.8)

which is the variance for compound diffusion obtained by Kota and Jokipii (2000) and Webb
et al (2006).

Two natural length and time scales in the system are

L1 = DL, T1 = D2
L

κ‖
, (3.9)

L2 = κ‖
Vz

, T2 = κ‖
V 2

z

. (3.10)

The length scale L1 = DL is the random walk diffusion coefficient, for the magnetic field,
and T1 is the time for the particle to diffuse parallel to the magnetic field over the distance DL.
These length and time scales can only be used in cases where DL �= 0 (i.e., they do not apply
if DL = 0). The advection–diffusion length and time scales L2 and T2 are useful in describing
the late time and long scale length behavior of P⊥ and the variances, but they only apply for
cases where Vz �= 0.

If one uses the length and time scales, L1 = DL and T1 = D2
L

/
κ‖, in the solution

(3.2)–(3.3), then the four parameters (3.4) describing the solution are given by

κ̄‖ = 1, κ̄⊥ = α, D̄L = 1, |V̄z| = β, L = L1, T = T1, (3.11)

where the parameters α and β are given by

α = κ⊥
κ‖

, β = |Vz|DL

κ‖
= κF

κ‖
, κF = |Vz|DL. (3.12)

The parameters α and β describe the cross-field particle diffusion coefficients due to local
perpendicular diffusion (κ⊥) and due to field line random walk (κF = |Vz|DL), respectively.

Similarly, if one uses the advection–diffusion length and time scales L2 and T2 in the
solution (3.2)–(3.3) for p⊥, then

κ̄‖ = 1, κ̄⊥ = α, D̄L = β, |V̄z| = 1, L = L2, T = T2. (3.13)

In this case, κ̄‖ = |V̄z| = 1 are fixed and κ̄⊥ = α, and D̄L = β are arbitrary.
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Figure 2. p⊥ versus r̄ for the case α = β = 0, using the length and time scales L1 = DL

and T1 = D2
L/κ‖ for a range of t̄ (t̄ = 1, 2, 5, 10). This corresponds to the compound diffusion

solution (3.7) with cylindrical symmetry about the mean magnetic field with κ⊥ = Vz = 0 but
κ‖ �= 0 and DL �= 0. Note p⊥ → ∞ as r̄ → 0.
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Figure 3. p⊥ versus r̄ for the case α = 0 and β = 0.5 using the same length and time scales as
figure 2, and for the same range of t̄ (t̄ = 1, 2, 5, 10). Because κ⊥ = 0, p⊥ → ∞ as r → 0. Note
Vz �= 0 and DL �= 0.

In figures 2–5, we use L1 = DL and T1 = D2
L/κ‖ as the length and time scales. Hence,

κ̄‖ = D̄L = 1, and κ̄⊥ = α and |V̄z| = β as in (3.11)–(3.12). Figure 2 shows the radial
distribution of p⊥ in (3.7) for α = β = 0 at times t̄ = 1, 2, 5 and 10. This solution
corresponds to the case of classical compound diffusion, in which there is no local cross-field
diffusion (κ⊥ = 0) and no advection or drift (Vz = 0). The particles are restricted to diffuse
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Figure 4. Same as figure 2 except α = 0.1 and β = 0 (i.e., Vz = 0, κ⊥ �= 0 and DL �= 0).
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Figure 5. p⊥ versus r̄ for a range of t̄ (t̄ = 1, 2, 5, 10), for α = 0.1 and β = 0.2 (cf figure 2).

along the random walking magnetic field. The net effect is subdiffusion of the particles across
the mean field with 〈r̄2〉 ∝ t̄1/2 as in (3.8) (see, e.g., the discussion by Kota and Jokipii (2000)
and Webb et al (2006)). The profiles show a cusp in the distribution at r̄ = 0. Figure 3 shows
how the profile of p⊥ in (3.2)–(3.3) changes if κ⊥ = 0 and Vz �= 0 (α = 0 and β = 0.5), for
the same range of t̄ as in figure 2. Figure 4 shows p⊥ versus r̄ for a range of t̄ (t̄ = 1, 2, 5, 10),
for a case where κ⊥ �= 0 and Vz = 0 (α = 0.1 and β = 0), whereas figure 5 shows the radial
profile of P⊥ when both κ⊥ �= 0 and Vz �= 0 (α = 0.1 and β = 0.2). The main point to note in
figures 2–5 is that the solutions in figures 2 and 3 with κ⊥ = 0 diverge at r = 0. This behavior
can be deduced from the solution (3.2) or equivalently from (2.64). From (3.2) the integrand
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Figure 6. p⊥ versus r̄ for a range of t̄ (t̄ = 0.01, 0.1, 0.5, 1) using the advection–diffusion length
and time scales L2 = κ‖/Vz and T2 = κ‖/V 2

z . The parameters α = 0.1 and β = 0.2.

has a non-integrable singularity when θ = −(
V 2

z t
/
(4κ‖)

)1/2
. This corresponds to the point

�z = 0 in (2.64). For figures 4 and 5 κ⊥ �= 0 (i.e. β �= 0), and the solution is smooth and
finite at r = 0. Thus, local cross-field diffusion κ⊥ �= 0 smooths and regularizes the solution
for p⊥ at r = 0.

Figure 6 shows an example of the radial profiles of p⊥, but now using the advection–
diffusion length and time scales L2 and T2 as in (3.13) (i.e., κ̄‖ = 1, |V̄z| = 1, κ̄⊥ = α, D̄L =
β). The profiles are given at times t̄ = 0.05, 0.1.0.5 and 1. In figure 6, α = 0.1, β = 0.2 (i.e.,
κ̄⊥ = 0.2, D̄L = 0.2), so that advection, parallel diffusion, perpendicular diffusion and field
line random walk are all operative. Figure 7 shows a three-dimensional plot of p⊥ versus r
and t for the same parameters as in figure 6 (α = 0.1 and β = 0.2). The figure shows a sharply
peaked radial distribution for p⊥ at early times, which decreases in amplitude and spreads out
at late times.

Figure 8 shows the variances 〈x̄2〉 versus t̄ using the advection–diffusion length and time
scales L2 = κ‖/Vz and T2 = κ‖

/
V 2

z for the cases (a) α = 0.1, β = 0.2, (b) α = 0.1, β = 0
and (c) α = 0, β = 0.2. For α = 0.1, β = 0, the solution for p⊥ is the heat equation
Green’s function (3.6) with κ̄p = κ̄⊥ = 0.1. The variance in this case is given by the formula
〈x̄2〉 = 2κ̄⊥ t̄ , which is the straight line, dashed curve with least slope. The asymptotic straight
line curves correspond to the expected variances 〈x̄2〉 at late times when ordinary diffusive
evolution of p⊥ takes place. In the late time limit, 〈x̄2〉 ≈ 2(κ̄⊥ + κ̄F )t̄ ≡ 2(α + β)t̄ . Note that
at early times the variance in these latter two cases is larger than that expected due to ordinary
diffusion, and is due to the effects of compound particle transport.

4. Physical implications

The above analysis implies that the effective cross-field diffusion coefficient κ⊥e in the presence
of field line random walk (DL �= 0) and advection and drift of the particles parallel to the
mean magnetic field (Vz �= 0) is given by

κ⊥e = κ⊥ + κF , κF = |Vz|DL, (4.1)
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Figure 7. A three-dimensional plot of p⊥ versus r̄ and t̄ for the same parameters as in figure 6
(α = 0.1 and β = 0.2). The figure shows that p⊥ is sharply peaked about r̄ = 0 at early times,
but decreases in amplitude and spreads out in r̄ at late times.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

t

<
 x

2  >
 

α = 0.1, β = 0.2
α = 0.1, β = 0
α = 0  , β = 0.2

Figure 8. The mean square value of 〈x̄2〉 versus t̄ using the length scale L2 = κ‖/Vz and time
scale T2 = κ‖/V 2

z for the cases (a) α = 0.1, β = 0.2 (b) α = 0.1 and β = 0, and (c) α = 0 and
β = 0.2. Also shown is the mean-square displacement 〈x̄2〉 = 2(α + β)t̄ versus t̄ applicable at late
times.

(see (2.72)), where κF is the particle diffusion coefficient due to field line random walk.
This result has potential implications for models of the eleven year, solar-cycle modulation
of galactic cosmic rays (e.g., Kota and Jokipii 1983, Hattingh and Burger 1995, Jokipii and
Thomas 1981, Potgieter and Moraal 1985, Alanko-Huotari et al 2007). In (4.1),

Vz = (u + VD) · eB (4.2)
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is the effective drift velocity of the particles parallel to the mean magnetic field B with unit
normal eB = B/B.

As an illustrative example of the above ideas, consider a simplified model of the
interplanetary magnetic field, used in modulation models, including the effects of drifts,
in which there is a flat current sheet in the helio-equatorial plane with a change of magnetic
polarity across the sheet. The flat current sheet model was used by Jokipii et al (1977)
to discuss the role of drifts on energetic charged particle transport in the heliosphere. More
complicated interplanetary magnetic field configurations are in general possible. For example,
Jokipii and Thomas (1981) discuss the effects of a wavy neutral sheet with tilt on the Parker
spiral field. Fisk (1996) modified the Parker spiral magnetic field to take into account the
off-set of the magnetic and rotational axes of symmetry at the solar source surface. However,
our aim is to illustrate the basic physical implications of (4.1), and we restrict our discussion
to the flat current sheet model.

For the flat current sheet model (which is a reasonable description of the field at solar
minimum), the magnetic field on either side of the sheet is the Parker, Archimedean spiral
magnetic field (e.g., Parker 1958). The magnetic field in this model is given by

B = A

r2
(er − tan ψeφ)[1 − 2H(θ − π/2)], (4.3)

where

tan ψ = �r sin θ

Vw

, A = σB0r
2
0 , σ = ±1 (4.4)

defines the Archimedean spiral angle ψ , between eB and the radial direction; � is the angular
frequency of rotation of the Sun and Vw is the solar wind speed (assumed to be constant and
radial). Here (r, θ, φ) are spherical polar coordinates centered on the Sun, er , eθ , eφ are unit
vectors in the radial, helio-latitudinal and azimuthal directions, and H(x) is the Heaviside step
function. In (4.3)–(4.4) A = σB0r

2
0 is a constant and σ = ±1 (B0 is the radial magnetic field

strength at radius r = r0 at the solar surface). For σ = 1, the radial magnetic field component
Br is outward in the northern hemisphere (0 < θ < π/2) and inward below the current sheet
for π/2 < θ < π . The opposite polarity is obtained for σ = −1.

4.1. The drift velocity

In (4.2), the drift velocity of the particles VD due to curvature and gradient B drifts and drifts
parallel to B is given by

VD = ∇ × (κT eB), (4.5)

where κT is the anti-symmetric component of the cosmic ray diffusion tensor. In the weak
scattering limit, κT ≈ vrL/3, where v is the particle speed, rL = pc/(ZeB) is the particle
Larmor-radius, p is the particle momentum, Ze is the particle charge and c is the speed of
light. From (4.5), the component of the drift velocity parallel to the magnetic field VDz ≡ VD‖
is given by

VD‖ = VD · eB = κT

∇ × B · B
B2

. (4.6)

Thus, the field aligned component of VD depends on the field aligned current J‖ = ∇ ×B · eB ,
associated with the magnetic field (4.3).

For the flat current sheet model (4.3) for the magnetic field B, the drift velocity VD from
(4.5) in the weak scattering limit (κT = vrL/3) has the form

VD = V(m)
D + V(s)

D δ(θ − π/2), (4.7)
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(e.g., Jokipii et al (1977)), where

V(s)
D = 2vpcr

3qA(1 + tan2 ψ)

(
eφ + tan ψer

)
(4.8)

is the singular component of the drift velocity in the current sheet and

V(m)
D = 2vpcr

3qA(1 + tan2 ψ)2
(− tan ψ cot θer + tan ψ(2 + tan2 ψ)eθ

+ tan2 ψ cot θeφ)[1 − 2H(θ − π/2)] (4.9)

is the mean, non-singular component of the drift velocity outside of the current sheet. Note
that the non-singular component of the drift V(m)

D and eB change sign across the current sheet.
Using (4.8) we find

V
(s)
D‖ = 0, (4.10)

so that there is no contribution to VD‖ from the singular current sheet component V(s)
D . Thus,

from (4.9) we obtain

VD‖ ≡ VDz = − 2vpcr tan ψ cot θ

3q|A|(1 + tan2 ψ)3/2
, (4.11)

for the component of the drift velocity parallel to B. The drift velocity component VD‖ in
(4.11) can be written in the more convenient form

VDz = −2

3
v

(
rL

r

)
�r cos θ

Vw

cos2 ψ, (4.12)

where

rL = pc

qB
, B = |A|

r2
sec ψ (4.13)

is the particle Larmor-radius at radius r and heliolatitude θ , and B = B(r, θ) is the
corresponding magnetic field strength. The form of VDz in (4.12) shows that VDz = 0 at
the current sheet at θ = π/2 and increases toward the poles where θ → 0. In addition, VDz

scales as the particle Larmor-radius, and in general is small for low rigidity particles for which
rL/r � 1, but VDz can be significant at higher rigidities (note we require VDz < v in general
on physical grounds). Using (4.2), we obtain above the current sheet

Vz(θ) = σVw cos ψ + VDz(θ), (4.14)

where 0 � θ � π/2. Below the current sheet, we obtain

Vz(π − θ) = −σVw cos ψ − VDz(θ), (4.15)

where from (4.11), VDz(π − θ) = −VDz(θ). Thus |Vz| is symmetric about the current sheet.
Because of the change of polarity across the current sheet, σVw cos ψ → −σVw cos ψ as we
change from θ to π − θ , where Vw is the radial solar wind speed. Also note that because both
eB and VD change sign across the current sheet, the formula (4.11) for VDz applies both above
and below the current sheet.

4.2. The field line random walk coefficient DL

In this subsection, we discuss ways in which to estimate the field line random walk coefficient
DL. It is important to note that our analysis has assumed at the outset that the field line
random walk statistics are Gaussian, with pdf PFRW given by (2.9). Ragot (1999, 2001,
2006a–2006c) and Shalchi and Kourakis (2007a, 2007b) have discussed evidence that the
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field line statistics, as observed by spacecraft in the inner heliosphere, may not be Gaussian,
but can be subdiffusive (〈�x2〉 ∝ �zα, α < 1) or superdiffusive (〈�x2〉 ∝ �zα, α > 1)

depending on the value of �z and the spectral shape of the power spectrum tensor Pij (k) of
the magnetic field fluctuations. We could in principle also develop the theory for cross-field
particle transport, based on a non-Gaussian form for PFRW describing the field line random
walk and other particle propagators Pp in the Chapman–Kolmogorov equation (2.2) to describe
the cross-field particle transport, but these generalizations will not be pursued in this paper.

Jokipii and Parker (1969) assuming slab turbulence obtained the formula

DL =
〈
(�x)2

2�z

〉
= u0

2B2
0

∫ ∞

−∞
〈δBx(t)δBx(t + τ)〉 dτ

= u0

2B2
0

Pxx(f = 0), (4.16)

for the field line random walk coefficient DL, where we assume cylindrical symmetry of the
turbulent fluctuations about the mean magnetic field, Pxx(f ) is the power spectrum of the
magnetic field fluctuations (slab turbulence) normal to the mean field at frequency f , and u0 is
the radial solar wind speed. Using Mariner spacecraft data, they obtained DL ∼ 2.5×1010 cm
for the field line random walk coefficient near Earth at 1 AU (use Pxx(f = 0) = 2×104γ 2 Hz−1

(1γ = 10−5 Gauss), and B0 = 4γ, u0 = 350 km s−1 in (4.16).
Matthaeus et al (1995) used Corsinn’s independence hypothesis to investigate field line

random walk in slab plus 2D turbulence. They obtained the formula

DL =
〈
�x2

2�z

〉
= 1

2

[
Dslab +

(
D2

slab + 4D2
2D

)1/2]
, (4.17)

for the field line random walk coefficient DL. Here, D2D and Dslab are the field line random
walk coefficients for 2D and slab turbulence, respectively. The result (4.17) implicitly assumes
that the integral defining D2D converges and is well defined. D2D is related to the so-called
ultra scale of the turbulence.

Assuming slab plus 2D turbulence, Shalchi et al (2009a) estimate that near 1 AU
Dslab

lslab
= πC(ν)

δB2
slab

B2
0

≈ 0.075,

D2D

lslab
=

√
s − 1

2(q − 1)

l2D

lslab

δB2D

B0
≈ 0.073, (4.18)

DL

lslab
≈ 0.120,

where C(ν) is a normalization constant for the slab turbulence power spectrum and
s = 2ν = 5/3 is the spectral index of the turbulence in the inertial range, and we choose
q = 1.5. Here, s and q are spectral exponents describing the 2D turbulence component,
and δBslab and δB2D are the characteristic magnetic field fluctuations associated with the
slab and 2D components of the turbulence (see appendix C for details). Taking lslab = 0.03
AU, l2D = 0.1lslab, B0 = 4.12 nT, δB/B0 = 1, δB2

slab = 0.2δB2 and δB2
2D = 0.8 (this

corresponds to 20% slab and 80% 2D turbulence) s = 5/3 and q = 1.5 in (4.18) we obtain
DL ∼ 3.6 × 10−3 AU = 5.38 × 1010 cm, which is comparable to the estimate of Jokipii and
Parker (1969) above based on the Mariner data.

4.3. Perpendicular mean free paths

In this section, we give examples of the contribution of field line random walk and advection
and drift to the effective cross field diffusion coefficient κ⊥e based on (4.1). We use the
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estimate DL ∼ 3.6 × 10−3AU = 5.38 × 1011 cm for the field line random walk diffusion
coefficient DL near Earth in the following analysis.

In the solar equatorial plane (θ = π/2), the drift velocity component VDz parallel to
the Parker spiral magnetic field is zero (i.e., VDz = 0 in (4.11)). Hence |Vz| = Vw cos ψ

is the effective advection speed parallel to B. For a nominal Parker spiral field, with Vw =
400 km s−1 and ψ = 45◦ at Earth, we obtain |Vz| = 282.8 km s−1 at Earth. For these values of
the parameters, the random walk, cross-field diffusion coefficient near Earth, near the current
sheet is thus κF = |Vz|DL ∼ 1.517 × 1018 cm2 s−1.

For θ �= π/2, there is a nonzero contribution to Vz from the drift VDz parallel to the Parker
spiral field B. In general, the effective perpendicular mean free path of the particles is given
by

λ⊥e = λ⊥ + λ⊥F , λ⊥ = 3
κ⊥
v

, λ⊥F = 3
κF

v
, (4.19)

where v is the particle speed and κF = |Vz|DL. Using expression (4.14) for Vz we obtain

λ⊥F = 3VwDL cos ψ |V̂ z|
βc

, (4.20)

where

V̂ z = Vz

σVw cos ψ
= 1 − 2

3
σ

(
v

Vw

) (
rL

re

) (
�re

Vw

)
cos θ cos ψ (4.21)

is the normalized version of Vz above the current sheet. Note |V̂z| is symmetric about the
current sheet (see (4.14) et seq.). The parameter β = v/c is the ratio of the particle speed to
the speed of light. It can be expressed in the form

β = v

c
= P√

P 2 + P 2
0

, (4.22)

where

P = pc

Ze
, P0 = E0

Ze
(4.23)

defines the particle rigidity P and the rigidity P0 correspond to the rest mass energy E0 = m0c
2

of the particle. If P and P0 are measured in MV then for electrons (e−) and protons (H +) we
have

P0 =
{

0.511 MV for e−

938MV for H +.
(4.24)

Taking Vw = 400 km s−1,DL = 3.6 × 10−3 AU, c = 3 × 108 m s−1, expression (4.20)
for λ⊥F reduces to

λ⊥F = 1.44 × 10−5 cos ψ

β
|V̂ z|AU, (4.25)

for the perpendicular mean free path λ⊥F . Noting that

rL

re

= P

reBe(B/Be)
= P(MV)

2.2425 × 105(B/Be)
, (4.26)

(i.e., reBe = 2.2425 × 105 MV for re = 1 AU and Be = 5 gammas = 5 × 10−5 Gauss)
and noting that �re/Vw = 1.00666 ≈ 1, where � = 2.6934 × 10−6 s−1 corresponds to the
rotation rate of the Sun (i.e., a rotation period of 27 days), we obtain

V̂ z = 1 − 2

3
C1σ

βP

(B/Be)
cos θ cos ψ, (4.27)
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Figure 9. Perpendicular mean free paths due to field line random walk for electrons (dotted curve)
and protons (solid curve) for |Vz| = Vw cos ψ near the current sheet (θ ∼ 90◦) and near Earth at
1 AU. Vw = 400 km s−1 and ψ = 45◦. Also shown are the perpendicular mean free paths for
protons (dashed curve) and electrons (dashed-dotted curve) obtained by Shalchi and Dosch (2008)
for comparison.

where C1 = 3.3444 × 10−3. Thus, (4.22), (4.27) and (4.25) give the perpendicular mean free
path λ⊥F due to field line random walk as a function of the particle magnetic rigidity P in MV
and in terms of the geometry of the Parker spiral magnetic field. Note that V̂ z = 1 in the solar
equatorial plane when θ = π/2 but V̂ z �= 1 for θ �= π/2 where drifts contribute to Vz.

Note in (4.27) that

B

Be

= 1√
2 cos ψ

( re

r

)2
, cos ψ = 1√

1 + (�r sin θ/Vw)2
, (4.28)

and hence

V̂ z = 1 − 2
√

2

3
C1σ

βP cos θ(r/re)
2

1 + (�r sin θ/Vw)2
. (4.29)

This latter expression for V̂z shows a complicated dependence on r and θ . In this paper, we
limit our numerical examples of λ⊥F to r = re = 1 AU. Note that in general DL will be a
function of r and θ , depending on the evolution of the turbulence throughout the heliosphere
(e.g., Zank et al (1996)). These issues lie beyond the scope of this paper where we simply
take DL = 3.6 × 10−3 AU and restrict our attention to r = re = 1 AU.

Figure 9 shows the plots of the perpendicular mean free path due to field line random
walk for both protons (solid line) and electrons (dashed curve) based on the above parameters
as a function of particle rigidity. For comparison, we have also shown the perpendicular mean
free paths for electrons (dashed curve) and protons (dashed-dotted curve) obtained by Shalchi
and Dosch (2008). The latter results were obtained by combining the nonlinear guiding
center theory for cross-field diffusion with the Lorentz force equation (see also Shalchi et al
(2009a)). Both electrons (dotted curve) and protons (solid curve) show an increase in λ⊥F

at low rigidities. However, the proton rigidities should not be extended below about 1.2 MV,
which corresponds to a proton moving at the solar wind speed (i.e., v = Vsw = 400 km s−1).
At high rigidities, there is no effective contribution to the total λ⊥.

Figures 10 and 11 show the perpendicular mean free paths λ⊥F for protons at helio co-
latitudes of θ = 0, π/4 and π/2. Note that λ⊥F is symmetric about the current sheet. In
figure 10, σ = −1 corresponds to a configuration in which the radial magnetic field is inward
above the current sheet and outward below the current sheet. Note that θ = π/2 corresponds to
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Figure 10. Perpendicular mean free paths for protons due to field line random walk for an
interplanetary field configuration with σ = −1 (radial field inward above the current sheet).
θ = 0, π/4 and π/2.

10
0

10
1

10
2

10
3

10
4

10

10

10

10

10

10

10

10

 P (MV)

λ ⊥F
 (

A
U

)

σ = 1, θ = 0
σ = 1, θ = π/4
σ = 1, θ = π/2

Figure 11. Perpendicular mean free path λ⊥F for protons due to field line random walk for
an interplanetary field configuration with σ = 1 (radial field outward above the current sheet).
θ = 0, π/4 and π/2.

a position in the current sheet at the helio-equator and θ = 0 corresponds to over the poles. For
the case σ = −1, there is an enhancement in λ⊥F due to the drifts (note that the effective drift
velocity VDz does not contain the singular current sheet drift; the drifts are the non-singular
component of the drift parallel to B). There is an increase in λ⊥F at large rigidities due to
drifts. In figure 11, σ = 1. In this latter case, there is a rigidity P = P∗ (P∗ ≈ 103 MV) where
λ⊥F = 0, since the advection and effective drift velocities are in opposite directions below this
rigidity. There is a significant contribution to λ⊥F above P = P∗. Similar variations for λ⊥F
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for σ = ±1 also occur for the electrons (not shown). The effect of drifts on λ⊥F is maximal
over the poles where θ = 0.

It is important to keep in mind the basic limitations to the theory used in the derivation
of the FLRW diffusion coefficient κF . In particular, the integral along the field line over z

in the Chapman–Kolmogorov equation (2.2) should be over many correlation scales, but not
over such a large scale as to violate the assumption that Vsw, B, κ‖ and κ⊥ are approximately
constant used in the particle propagator Pp. To estimate these limitations, we note from (4.26)
that rL/re ∼ 0.05 AU for a P = 104 MV particle in the vicinity of Earth at r = 1AU . If
the averaging length Lav used in the Chapman–Kolmogorov equation (2.2) was 10 Larmor
radii say, this would correspond to a distance of Lav = 0.5 AU for a 104 MV particle.
The application of the theory in this case would be marginal. However, for P = 103 MV,
rL/re ∼ 0.005 AU, and the assumptions of the theory would be fulfilled.

5. Conclusions

In this paper, we have developed the Chapman–Kolmogorov equation approach to compound
cross-field diffusion, in which the probability distribution function (pdf) for cross-field
transport, P⊥, is given as a convolution of the pdf for field line random walk, PFRW, and
the pdf for particle transport, Pp, relative to the random walking magnetic field. The analysis
was restricted to the case of normal diffusive field line random walk for PFRW (this restriction
could in general be relaxed in more general models). The pdf for particle transport, Pp, took
into account advection, drift, parallel diffusion and local cross-field diffusion.

The mean square deviation (MSD) of the particle for crossing the field 〈�x2(t)〉 was
obtained by taking moments of the pdf P⊥. At early times, 〈�x2(t)〉 ∝ √

t characteristic
of compound diffusion (e.g., Kota and Jokipii (2000), Webb et al (2006, 2008)), whereas at
late times 〈�x2(t)〉 ∼ 2(κ⊥ + κF )t , where κ⊥ is the local cross-field diffusion coefficient and
κF = |Vz|DL is the cross-field diffusion coefficient due to field line random walk (DL) and
due to drift and advection parallel to the mean field (|Vz|). The long time diffusive behavior is
obtained on a time scale of a few advection–diffusion times scales T2 = κ‖/V 2

z where κ‖ is the
parallel diffusion coefficient. A method for determining the higher order moments of the pdf
P⊥ was developed (appendix A) and was used to obtain explicit formulae for the fourth-order
moments.

Numerical examples of the pdf P⊥ were obtained (figures 2–7). In the absence of
local cross-field diffusion (κ⊥ = 0), the distributions exhibit a logarithmic divergence with
cylindrical distance r as the source field line is approached (figures 2 and 3). This includes
the case of compound diffusion (κ⊥ = 0 and Vz = 0), for which the pdf P⊥ can be expressed
in terms of a Meijer G function (appendix B). For cases with κ⊥ �= 0, the pdfs have a smooth
bell-shaped profile with cylindrical radius about the source field line (figures 4–7).

Estimates of the cross-field diffusion coefficient κF = |Vz|DL due to field line random
walk and advection and drift were obtained for a model with an Archimedean, Parker spiral
magnetic field, in which the field changes polarity across a flat current sheet located in the solar
equatorial plane. The field line random walk coefficient DL was estimated for slab plus 2D
turbulence power spectra, by using the results of Matthaeus et al (1995), Shalchi and Kourakis
(2007a, 2007b) and Shalchi et al (2009a). Estimates of κF were obtained both near the current
sheet (θ ≈ 90◦) and at higher heliolatitudes (θ = 45◦ and θ = 0◦). Near the current sheet
(θ ≈ 90◦), the effective advection speed |Vz| = Vw cos ψ, where Vw is the solar wind speed
and ψ is the interplanetary spiral field angle (there is no effective contribution to |Vz| from
drifts in this case). The effects of particle drifts on λ⊥F are maximal over the poles (Figures
10 and 11). The perpendicular mean free path λ⊥ = 3κ⊥/v obtained in a recent model of
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perpendicular diffusion based on the generalized NLGC–Newton–Lorentz theory of Shalchi
and Dosch (2008) was compared with the field line random walk contribution λ⊥F = 3κF /v.
It was found that there can be a substantial contribution to the total perpendicular mean free
path λ⊥e = λ⊥ +λ⊥F due to field line random walk at low rigidities (Figure 9: see also Shalchi
et al (2009a)).

The Chapman–Kolmogorov approach to cross-field particle transport used in this paper
was restricted to the case of normal diffusive field line random walk. This restriction of
the theory can clearly be relaxed to take into account the possibility of subdiffusive or
superdiffusive field line random walk, by using a modified pdf PFRW for the field line random
walk. Shalchi et al (2009b) have used a kappa distribution for the field line random walk pdf.
They obtain results that are similar to using a Gaussian pdf for the field line random walk.
The pdf Pp used to describe the particle transport relative to the random walking field could
in principle be modified to reflect more accurately the particle transport (as determined, for
example, from numerical simulations).
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Appendix A

A method for calculating the moments 〈r̃n〉 for both odd and even n is described below.
By using the integral (2.64) for P⊥(r̃, t) in (2.65), interchanging the order of the r̃ and z

integrations and carrying out the integrations over r̃ gives the formula

〈r̃n〉 = 2n�

(
n

2
+ 1

) ∫ ∞

−∞

d�z√
4πκ‖�t

λn/2 exp

(
− (�z − Vz�t)2

4κ‖�t

)
, (A.1)

where

λ = κ⊥�t + DL|�z|. (A.2)

By splitting the integral over �z in (A.1) into the �z < 0 and �z > 0 regions, we obtain

〈r̃n〉 = 2n�

(
n

2
+ 1

) (
I−

n + I+
n

)
, (A.3)

where

I±
n = 1√

π

∫ ∞

w±
(a±�t + b

√
�tw)n/2 exp(−w2) dw, (A.4)

a± = κ⊥ ± DLVz, b = 2DL

√
κ‖, w± = ∓Vz

√
�t

2
√

κ‖
. (A.5)

By noting that

a±�t + b(�t)1/2 = κ⊥�t + b(�t)1/2(w − w±), (A.6)
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we obtain the alternative formulae

I±
n = 1√

π

∫ ∞

w±
[κ⊥�t + b

√
�t(w − w±)]n/2 exp(−w2) dw, (A.7)

for I±
n .
For the even order moments, n = 2m (m integer), the integrals (A.7) can be evaluated by

using the Binomial theorem to expand the λn/2 term in (A.1) or (A.7) to obtain

I±
2m = 1

2

m∑
s=0

(κ⊥�t)m−s

(m − s)!
(b�t1/2)sis erfc(w±), (A.8)

where

is erfc(z) = 2

π1/2

∫ ∞

z

(t − z)s

s!
exp(−t2) dt (A.9)

are the iterated integrals of the complementary error function (Abramowitz and Stegun (1965),
formula 7.2.3, p 299). We note, for later use, that

i0 erfc(z) = erfc(z), i1 erfc(z) = 1√
π

exp(−z2) − z erfc(z),

i2 erfc(z) = − z

2
√

π
exp(−z2) +

(
1

4
+

z2

2

)
erfc(z).

(A.10)

As an application of formulae (A.3) and (A.8) for I±
2m, consider the case m = 1. Using the

results (A.10) we obtain 〈x̃2〉 = 〈ỹ2〉 = 1
2 〈r̃2〉, where

〈x̃2〉 = 2
(
I−

2 + I+
2

)
= 2κ⊥�t + 2DLVz�t erf

(
Vz�t1/2

2κ
1/2
‖

)
+ 4

(
κ‖D2

L�t

π

)1/2

exp

(
−V 2

z �t

4κ‖

)
, (A.11)

for the nonzero, second-order moments of P⊥(r̃, t). Equations (A.11) are the second-order
moments of P⊥ discussed in (2.69) in the text.

Appendix B

In this appendix, we discuss the compound diffusion solution (3.7). Because the integrand is
even in θ, it can be written in the form

p⊥ =
∫ ∞

0
f (θ) dθ, (B.1)

where

f (θ) = A

θ
exp

(
−θ2 − B

θ

)
, (B.2)

A = 1

4π3/2D̄L(κ̄‖ t̄ )1/2
, B = r̄2

8D̄L(κ̄‖ t̄ )1/2
. (B.3)

In the numerical integration of (B.1), it is useful to note that f (θ) has a maximum when
f ′(θ) = 0, where

f ′(θ) = f (θ)
(B − θ − 2θ3)

θ2
. (B.4)
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The required real root θ = θ1 of the cubic equation obtained when f ′(θ) = 0 is given by

θ1 =
[

B

4
+

(
B2

16
+

1

63

)1/2
]1/3

−
[(

B2

16
+

1

63

)1/2

− B

4

]1/3

. (B.5)

For small B (|B| � 1), θ1 ≈ B and f (θ) is sharply peaked about θ = θ1. Using Mathematica
(R Burrows, personal communication (2009)), one can identify p⊥ with the Meijer G function

p⊥ = A

2
√

π
G

3,0
0,3

(
B2

4

∣∣∣∣ {}
(0, 0, 1/2)

)
. (B.6)

Either by differentiating (B.1) multiple times or using the results from Erdelyi et al (1953)
(Higher Transcendental Functions vol 1, p 206, section 5.3) one can show that p⊥ satisfies
the third-order differential equation(

δ3 − 1
2δ2 + z

)
p⊥ = 0, (B.7)

where z = B2/4 and δ = zd/dz. Investigation of the solutions of (B.7) about z = 0 reveals
that z = 0 is a regular singular point of the differential equation in the sense that the indicial
equation λ2(λ − 1/2) = 0 is well defined (i.e., look for solutions with p⊥ ∝ zλ). This implies
that (B.7) has three independent solutions of the form p⊥ ∼ a1 ln(z), a2z

0, a3
√

z near z = 0.
For the integral (B.1) for p⊥ one can show that

p⊥ ∼ −A ln B = − 1

4π3/2
(
D̄2

Lκ̄‖ t̄
)1/2 ln

(
r̄2

8
(
κ̄‖D̄2

Lt̄
)1/2

)
, (B.8)

for small B (i.e. for small r). This asymptotic form is to the lowest order the same as in Webb
et al (2006) equation (3.28). In Webb et al (2006), the solution for p⊥ is expressed as an
inverse Laplace transform.

Appendix C

In this appendix, we list analytical formulae derived by Shalchi and Kourakis (2007a)
and Shalchi et al (2009) used to derive the results (4.18) for Dslab,D2D and DL given in
section 4. For slab plus 2D turbulence, the power spectrum of the slab and 2D components of
the turbulence have the form

P slab
xx = gslab(k‖)

δ(k⊥)

k⊥
, (C.1)

P 2D
lm (k) = g2D(k⊥)

δ(k‖)
k⊥

(
δlm − klkm

k2

)
, l, m,= x, y. (C.2)

The slab spectrum gslab(k‖) is given by

gslab(k‖) = C(ν)

2π
lslabδB

2
slab[1 + (k‖lslab)

2]−ν, (C.3)

where

C(ν) = �(ν)

2
√

π�(ν − 1/2)
≡ 1

2B(1/2, ν − 1/2)
(C.4)
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is the normalization constant for the spectrum, chosen such that
∫

P slab
xx (k) d3k = δB2

slab. Here,
�(ν) is the Gamma function and B(p, q) is the Beta function (Abramowitz and Stegun (1965),
chapter 6, p 255). The 2D power spectrum is taken of the form

g2D(k⊥) = A(s, q)δB2
2Dl2D

(k⊥l2D)q

[1 + (k⊥l2D)2]s
, (C.5)

where

A(s, q) = 2

πD(s, q)
,

D(s, q) = �[(s + q)/2]

2�[(s − 1)/2]�[(q + 1)/2]
≡ 1

2B[(s − 1)/2, (q + 1)/2]
.

(C.6)

Shalchi and Kourakis (2007a) show that for slab turbulence with power spectrum P slab
xx as

above 〈�x2〉 = 2Dslab|z|, where

Dslab = πC(ν)lslab
δB2

slab

B2
0

, (C.7)

(this result would be different for a different power spectrum in the energy range: Shalchi and
Kourakis (2007b)). Similarly, for pure 2D turbulence: 〈�x2〉 = 2D2D|z| with q > 1 (Shalchi
and Weinhorst (2009), Shalchi et al (2009)) one obtains

D2D =
√

(s − 1)

2(q − 1)
l2D

δB2D

B0
. (C.8)

For 0 < q < 1 and for 〈�x2〉 � 2l2
2D, one obtains superdiffusive field line random walk, with

〈�x2〉 = A|z|4/3, (C.9)

where

A = 2

[
(3 + q)2

4(1 − q)

]2/(q+3) [
D(s, q)�

(
q + 1

2

)
l
q+1
2D

δB2
2D

B2
0

]2/(q+3)

. (C.10)
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